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I. Introduction

This paper presents a continuation of the work
described in Reference 2. That report presented several
techniques for estimating the orbital paremeters of planetary
artificial satellites and the planetary gravitational parameter.
This work presents a more detailed analysis of the accuracy
to which the method of differential correction with a least
squares estimation criterion can be expected to converge. The
analysis is performed for a simplified case of a satellite
orbiting Mars and being tracked from earth. The Doppler
measurements for a set of orbital parameters are computed
and then corrupted by additive random noise with a normal
distribution., The metheod of differential corrections is then
used to estimate the orbital parameters of the satellite from
these noisy measurements. The covariance matrix for the errors
in the estimation is generated for the nominal orbital para-
meters of the satellite and is a bound on these errors., The
method presented here 1s self-contained but is primarily intended
to supplement Reference 2. Therefore, some material which has
been treated fairly completely in that paper has been covered
rather superficlally here.

Il. Physical Model

A) Coordinate Systems: For this study, we will use three
coordinate systems. These are:

1) Sun-Centered Ecliptic. The origin of the coordinate
system is located at the center of the sun and the
z—axis is perpendicular to the plane of the ecliptic
pointing toward celestial north. The positive x-axis
is in the ecliptic and points to the vernal equinox
of the earth. The y-axils is in the ecliptic and com-
pletes the right hand cocoordinate system.

2) Planet-Centered Ecliptic. Identical in orientation
to the sun-centered ecliptic frame but with its origin
at the center of the planet.
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3) Tlanet-Centered Satellite Plane. The origin of the
coordinate system 1s at the center of the planet and
the poslitlve z-axls 1s perpendlcular to the satellite
plane and parallel to the satelllte angular momentum
vector. The x-axls 1s in the satellite orbital plane
and polnts through the satellite periapsis. The y-axis
completes the right-hand set.

The position and velocity of a satellite in a Keplerian
orbit may be completely specified by time and the six orbital
constants

a = semi-major axis

e = eccentricity

T = time of periapsis passage

i = inclination

w = argument of periapsis

Q@ = longitude of ascending node.

The variables a and e define the size and shape of the
orbit, 1 allows us to relate true anomaly to absolute time, and
i,0, and Q@ are a set of Fuler angles defining the orientation of
the satellite orbital plane with respect to a reference frame.

We also define

T

true anomaly

Y gravitation parameter of the attracting mass.

The angular variables (i,w,9,f) are illustrated in Figure 1.

In the satellite orbit plane, the magnitude of the
radius vector is given by

2
_a(l-e™)
' = T¥e cos . (1)

The in-plane velocity components are given by

1/2

!

R — e sin f (2)
a(l-eg) &
4

L]
r =

LY
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T - 172
rf = L —?IE—E;— (1+e cos f), (3
a\l-e

The relatlion between f and time is given by Kepler's equation

l;
E-e sinE =/

L () ()
Vo a
where E = eccentric anocmaly
and S
NS
. _V1l-e” sin E
sin f = =755
cos f = cos E - e
l-e cos E
The coordinates in the planet-cenftered satellite plane
are
x3 = r cos [ X3 = pr cos f - rf sin T
y3 = r sin f; y3 = r sin f + rf cos f (5)
= 0; = 0
23 5 23

To transform to the planet-centered ecliptic plane we require
three successive coordinate rotations of -w, -i, and -9 about
the instantaneous z, x, and z axes, respectively. In vector-
matrix notation, we have

~ - — NI n o
X5 ‘cos @ -sinq o0}l 1 O 0 i rcos w =sin w O | X3 1
Vo |= %31n @ cos @ 0f} 0 cos 1 -sin i % sin w c¢cos w O f? Y3 %
z, i 0 0 l‘ 0 sin 1 cos 1 \ 0 0 1 ;5 7z
2~l i_ J - L G 3.
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or
r, = Ar; . (6)

Similarly, the velocity vector 1s transformed using

¥, = AX3 . (7)

It should be emphasized that the satellife orbital elements

are referred to the planet-centered ecliptic reference frame

and not the more common planet-centered equatorial frame. If

1t 1s desirable to refer the orbital elements to the equatorial
frame (e.g., when perturbations due to higher order terms in

the planetary gravitation field are to be included) Equations (6)
and (7) must be written as

L, = BA I3
v, = BA V3 (8)
where _
cos a . -sin o 0-1 1 0 0
B = sin o cos o 0 0 cos i -sin 1i_
= o o]
0 0 1 0 sin i cos 1.
L. J O
3
cos B -sin g O §l 0 0
sin 8 cos g 0] {0 cos i -sin i
1; p P
0 0 1}:0 sin i cos i
and

a = angle between the vernal equinox of the earth
and the ascending node of the orbit of Mars
measured in the ecliptic plane

i = inclination of the Martian orbit
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w
it

angle between the Martian ascending node and
the Martian vernal equinox measured in the Martian
orbltal plane

1 = inclination of the Martian polar axis to the
p Martlian orbital plane.

B) Tracking Geometry

For simplicity, the earth is assumed to be in a
circular orbit with its polar axis at zero inclination. Mars
is assumed to be in an elliptical, inclined orbit with its
polar axis inclined to its orbital plane. A satellife in
an elliptical orbit about Mars 1s tracked by an antenna
located on the surface of the earth. The following vectors
are defined:

R(t) - location of the tracking antenna in an earth-
centered ecliptic frame.

D(t) - vector from the center of Mars to the center
of earth in a sun-centered ecliptic frame.

g(t) - location of the Mars satellite in a Mars-centered
ecliptic frame.

The first two vectors are assumed known to a fairly high degree
of accuracy. (This accuracy will be examined more closely in
Appendix A). The third vector is what we wish to determine and
is initially known only approximately. If we now define

p = vector from the ftracking antenna to the satellite,
we see from Figure 2 that

p(t) = r(t) - D(t) - R(t)

(9)

o(t) = r(t) - D(t) - R(t)

At the tracking station, we measure the Doppler shift of a
signal sent from the station to the satellite and back again.
This allows us to calculate* the relative velocity between the
satellite and the antenna along the p direction. Thus, we can
consider the measurements F(ti) taken by the tracking station
to be

il

F(ty) = p(ty) . ot ) (10)

¥Fg, (9) is approximate for the case of a real measurement
program. See point (6) on page 15.
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where p indicates a unit vector. The measured value of the
Doppler shift is assumed to contain a random error. Our object

is to use a sequence of N measurements taken at times tl, t2,...,

tN to determine the orbital parameters (a,e,1,i,w,Q) of the

satellite plus the gravitational parameter u of Mars. The
method we will use will be that of differential corrections.

III. Method of Differential Corrections

A) Suppose we wish to estimate the m-component state
vector, x, of a system using a p-component measurement vector,
Z, oontalnlng random errors, v, which are independent of the
state x. If we assume the measurements to be linear functions
of the btate we may write

z = Hx + v (11)

where H is a known p by m matrix of constants. We also assume
the measurement noise to be normally distributed with a zero
mean, so that

Ely] =

T .
Elvv] =R ( a known p by p matrix).

If the measurement process is nonlinear,

z; = F(&,ti) + v (12a)

it is necessary to approximate the relation given in Equation (11).
To do this, assume we have a first guess, X, for the state that

is close to the actual solution, x. Let the measurement vector
corresponding to x be given by z, i.e.,

Z. = F(&,ti)
Then, we may write
= Ei = F(Esti) - F(ﬁati) + V.
To first order, we may write
_ POP(x,T.)
- F(X,t.) = i - X
Flx,t5) = F(X,t,) = — | (x - x)

i
I
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1f we let
X = x - X
8z = z - Z s
then we have
EBF(ﬁ,ti)
If we set
[BF(i,ti)
iy = |7 o @=1..p)
J X = X (j =1,...,m),

then we have the analogous form to Equation (11), where the
value of the state, x, has been replaced by its deviation, $Xx.

Using a maximum likelihood estimator, we seek a
weighted least-squares estimate, X, that minimizes the cost
function

-1

3 =% [(sx - Hox)" R™ (6x - H6x)J. (13)

In Reference (1) it is shown that the estimate is given by

X = x + PH R (8z - Hé&X) (14)

where

P’l = HTR_lH. (15)

We then set x = x and repeat the iteration. It is also shown
in Reference (1) that P is the covariance matrix for this estimate
of the state, 1.e.,

P=Elee ]

where

<o
i
3

S:

Several techniques for implementing this algorithm (Equation 1i4)
are given in Reference (2). 1In practice, it proved faster to
use the nonlinear term
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[z, - Fx,t,)]

to replace the linear approximation

L&z

g - HExy

in the actual computation of Equation (14). Comparison of
Equations (12a) and (12b) show that the two terms are equivalent.

B) Application to the Problem

For .our problem, we define the state of the satellite
by the six orbital elements

T .
x* = [a,e,7,1,0,0]

When the gravitational parameter 1s being estimated, the state
is enlarged to seven dimensions

T .
X = [a,e,’f,l,m,ﬂ,u]

The measurement process

z; = F(x,t )

is highly nonlinear and must be linearized as described in
Equation (12b). The derivation of the partial derivatives for

0F (x,t,)
H =.____._...___.J:_—

13 ij

j = 1,...m (m is either 6 or T)

is given in Appendix B.

The components of the measurement noise, K are assumed
to be uncorrelated, with a constant standard deviation. Thus
2

E[vivj] =04 Gij
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and therefore, the covariance matrix is the diagonal matrix

R=o¢1. (I = p by p identity matrix)
From Equations (14) and (15), we see that

('H1™t BY (2-F(X)) (16)

il
+

i:

P = o[HH] T (17)

The elements of the P matrix represent the expectations of the
products of the errors in the components of x, i.e.,

P.. = E[8x,68x,1
L J

iJ

Thus, the diagonal elements of P represent the square of the
standard deviation of each component of the state vector x,
while the off-diagonal elements represent the cross-correlation
between errors in these elements.

If our first guess, g, is close enough to the solution
point for the minimum of the cost function given in Equation (13),
the iterative use of Equation (16) will lead us to that solution
point. At this solution point, the covariance matrix, P, gives
us some idea of the accuracy to which we have converged. An
estimate of the best value of o for the measurement noise for
this particular problem is given in Appendix A.

IV. Simulation Results

For simulation purposes, Earth and Mars were assumed to
move in Keplerian orbits with the following elements (defined
with respect to the sun-centered ecliptic frame):

Earth Mars
a(km) 1.495(10%) 2.275(10°%)
e 0.0 0.093368
1(hrs) 0.0 0.0
i 0° 1.84991°
o 0° 286.08176°
9} Q° 4g,24903°

u (km>/hrs? ) 1.7199864(10%%)  1.7199864(10%8)
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The tracking station was assumed to be located on
the surface of the earth (RE = 6378.16 km) at 35° N latitude,

117° W longitude. The angular velocity of the earth's rotation
was taken as

oy, = 7.2921158(10™°) rad/sec.

The earth's polar axis was assumed to have zero inclination.
Using this information plus the nominal elements for the Mars
orbiting satellite, the theoretical Doppler shift is calculated
from Equations (9) and (10). For the cases simulated, the
Doppler shifts calculated corresponded to relative velocities
ranging from 27,500 km/hr (7600 m/sec) to 39,000 km/hr .
(10,800 m/sec). The main contribution to this was from D(t),
the relative velocity between earth and Mars. These measure-
ments are then corrupted by additive random noise with a normal
distribution having zero mean and a standard deviation of

g = .152 k@/hr (.0423 m/sec) .

This set of corrupted measurements [F(tl), i=1,2...,N] is then
used to estimate the original orbital parameters.

From Equation (17), we may calculate the covariance
matrix P using

P = o2[HH]?,

Covariance matrices are evaluated at the nominal state values

to avoid introducing effects caused by different solution points
for different numbers of measurements and different sets of
measurement noilse.

The results of the computer simulation are illustrated
in Figures 3 to 28. The values of the orbital parameters
(a,e,7,i,w,R), the gravitational parameter (u), and the data
point spacing (4t) used in simulating the measurements are
given on each. Curves 1 and 2 in Figures 3 to 10 are the
standard deviations for the estimates of the state variables

as functions of tracking time for a rather elliptical (e = .574)
orbit. Curves 3 and 4 in Figures 3 to 10 give the same quantities
for a nearly circular (e = .05) orbit. Curves 1 and 3 are

for a six dimension state vector and Curves 2 and 4 are for a
seven dimension state. The predomlnant feature of these curves
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is a rather sharp drop initlally 1n the standard deviation
which changes into a more gradual decline as the tracking
time increases. The curves also appear to be modulated by
periodic terms whose predominant period is the orbital
period for curves 1 and 2 and half the orbital period for
curves 3 and 4. The first big drop in the standard devia-
tions levels off somewhat at the end of the first orbit of
tracklng. Each succeedling orbit of tracking time adds a
diminishing amount to the accuracy of the esimate. It 1is
also interesting to note that each gharp drop in the standard
deviation curves for orblts with large eccentricity occurs
around periapsis. For those cases where

a = 12,760 km ,

the satellite passes through perlapsis at

t = 14,14 hrs

i

26.28 hrs
38.42 hrs -

50,56 hrs.

The effect 1s most easily visible in Figure 3, curve 1. This
effect 1s due to the increased angular velocity of the satellite
near perlapsis. Thus, the time rate of information on the shape
of the orbit 1s high near periapsis and low near apoapsis. For
orbits with low eccentricity (e.g., curves 3 and Y4 on Figures 3
and U, respectively), this effect 1is not present. Instead, a
term with about double the orbital frequency appears to modulate
the drop in the standard deviations.

Comparison of standard deviations between curves 1 and
and between curves 3 and 4 shows the effects of including the
estimation of the gravitational parameter. The standard devia-
tion of the semi-major axis (Figures 3 and U4) increases four
orders of magnitude when u is estimated. Also, for the low
eccentricity case, the standard deviations of y and ¢ increase
by an order of magnitude (Figures 8 and 9, respectively). The
standard devlation of ¢ changes only slightly when y is estl-
mated, but increases by an order of magnitude when we go from
a highly eccentric to a nearly circular orbit (Figure 6). The
standard deviation of p also increases as eccentricity decreases
(Figure 10). The standard deviations of e and 1 appear to be
affected very little by changes in e or by including yu in the
estimation (Figures 5 and 7, respectively).

ro
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Figures 11-16 1illustrate the effects of changing
the data point spacing. Curves 1, 5, and 6 have a data
point spacing of .5 hours, .l hours and 1.0 hours, respec-
tively. 1In general, an 1lncrease of the data point spacing
from .5 hrs to 1.0 hrs (thereby halving the number of data
points in a given time period) results in an increase of
the standard deviations of about U45% to 60%. Decreasing
the data point spacing to .1 hrs (using five times as many
points in a given time period))yields a drop of only 50%
to 60% in the standard deviations. The shapes of the
curves of standard deviations vs. tracking time remain
egssentially the same and are merely shifted up or down.

Figures 17-22 show the effect of orbital period.
The semi-major axis for curve 1 is 12,760 km and for curve 7
is 8960 km. The remaining orbital elements are identilcal
for the two orbits.

Comparison of curves 1 and 7 shows that the
accuracy for the estimates of a (Figure 17) and t (Figure 19)
are affected more by the number of orbits of tracking data
(i.e., the angular length of orbit tracked) rather than the
length of time the satellite i1s tracked. The orbit in
curve 1 has a period of 12.1415 hrs while that in curve 7
has a period of 7.13 hrs. Periapsis for the 7.13 hr orbit
occurs at

t = 9.13 hrs
16.26 hrs
23.39 hrs
30.52 hrs
37.65 hrs
44 .78 hrs

and the drops 1in the standard devlations at these points are
evident. The values for standard deviations of a and t are con-
sistently smaller for the shorter period orbit in curve 7,
while those for e, i, w and © are roughly the same for curves 1
and ‘7. Temporary large differences in them are.due to the dif-
ferent orbital frequencies modulating their decrease. The in-
crease in tracking accuracy of "a" results from the higher
angular velocity associated with shorter period orbits. An
error in "a" results in an error in period which causes a
growing phase difference between the measured and calculated
positions of the satellite. This shows up more rapidly for

a shorter period satellite. For a similar reason, the accuracy
of estimation of u should increase faster for a short period




BELLCOMM., INC. - 13 -

orbit. This effect can be seen in Equation (B7) in Appendix B,
‘ 3F 3F

where the coefficients of the secular terms in 38 and Em and
the constant in %g vary inversely with a and hence inversely

with the orbital periocd.

The standard deviations provide us with a useful
bound on the magnitude of the errors since, for a normally
distributed error,

Prob [Idxil <o, 1= 68.27%
i

Prob [féx,| < 20, 1 = 95.45%
i

Prob []éx;| < 30, 1 = 99.73%.
i

Figures 23-28 are a set of standard deviations and error
values for a typical case. The curves are the estimated
standard deviations and the discrete points are the absolute
value of the errors between the nominal orbital elements and
the estimated values. The figures show that the errors
generally lie within the 1o bound.

Another useful quantity is the normalized covariance
matrix. This is generated using the relation

#

SN
11733
It can be seen that the diagonal elements of Pij will be unity
while the off-diagonal elements range from zero to unity. A
value of unity for Pij indicates that Gxi and ij are linearly

related while a value of zero indicates that their relationship
is purely random. Examples of the normalized covariance matrix
for tracking time of 6 and 48 hours for a six and seven dimen-

sion state vector are given in Tables 1 and 2, respectively.

V. Areas for Further Investigation

1) The motion of the earth was assumed to be a circular
orbit with zero inclination and the earth's polar axis was as-
sumed to be normally inclined to the orbital plane in order
to avoid the transformation of R(t) from the earth-centered equa-
torial frame to the earth-centered ecliptic frame described
previously. This transformation might be introduced for completeness.
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2) No provision was made to take into account loss of
tracking data due to occultation of the satelllite by eilther
earth or Mars. Thils could make a significant difference in
the time needed to estimate the state vector, particularly
if data near periapsis 1s lost.

3) The motion of the satellite about Mars was assumed
to be essentially Keplerian in nature. For the orbits and
tracking times discussed, this 1s a good assumption. How-
ever, for higher orbits (i.e., symehronous altitudes and above),
solar perturbations may alsc exert a noticable effect. It

should also be noted that the J2 term in the planetary gravi-

tational field gives rise to secular changes in w and Q. These \
changes may amount to about .05 - .2 deg/day for the orbilts |
discussed and suggest that our estimate for these parameters \
be updated at weekly intervals. Alternatively, these secular

changes in w and © could be included in our equations of motion

to allow longer periods of validity for our estimate. If this

is done, the additional coordinate rotations described in
Equation 8 must be included so that calculations may be per-
formed in the planetary equatorial frame.

4) The random noise added to the simulated measurements
was generated by the normal distribution pseudo-random noise
generator included in the Univac 1108 Mathpack subroutine.

The desired moments were 2zero mean and a standard deviation of

o = .152. L

These were generally accurate to about .02 for both the mean
and the standard deviation. However, histograms plotted for
distributions of 100 points showed that the distribution did not
closely resemble the bell-shaped curve for a normal distribution.
Often, a skewed, two-hump distribution resulted. 1In addition,
plots of points in the sequence of their generation showed
certain non-random patterns (e.g., every second or fourth point
following a smooth curve for 30 or 40 points). This latter
result violates our assumption of uncorrelated noise. The fact
that the actual errors did, however, consistently lie near or
wlthin the one sigma bound indicates that this violation was
not too serious. Still, a more accurate means of generating
random noise with a normal distribution might be investigated.

5) In some instances (e.g., for the gravitational parameter u)
we have an a priori estimate of both a parameter and its statis-
tics. These a priori statistics of the initial guess may be
included to weight the initial guess for that parameter more
heavily. This is done by changing Equation (15 ) to
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where

M=E[(x-X((x-0"1 .

One effect of including the statistics of the initial
elements would be to decrease the large standard deviations
for short tracking times.

6) For a real measurement program Eq. (9) must be
written to account for the light-time correction. That is,
the measured Doppler shift is the difference between the
signal frequency transmitted at to from R(to) and that

received at R(tz), this being a measure of the satelllte
velocity at time tl, where tg—tlztl—tO:D/c (¢ = velocity

of light). Corrections for atmospheric refraction may
also be made (see Ref. 3).

VI. Conclusions

The state vector of a planetary artificial satellite
can be accurately determined using range-rate measurements
taken from earth. The error estimates given by the covariance
matrix provide a conservative upper bound for errors in the
state estimation when the method of differential corrections
i1s used with simulated nolsy measurements.

The accuracy of the state estimation 1s a function
both of the number of data points and the total tracking time.
No rigorous attempt was made to optimize tracking time or data
point spacing but a spacing of .5 hrs and a tracking time of
30-40 hrs yield good results for the cases simulated. The
accuracy of the estimation for some state vector parameters
decreased significantly when the gravitational parameter of
the planet was added to the state vector. '

For relatively eccentric orbits, the state estimation
showed a fluctuation in accuracy with the same period as the
orbit. This was caused by the higher rate of data influx near
periapsis due to the higher angular velocity of the satellite.
The accuracy in estimation of a and t appeared to depend more




.
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on the number of orbits tracked rather than on the tracking
time. This was caused by the presence of constant or secular
terms whose coefficients depended on the magnitude of the
satelllte mean motion. The accuracy of estimation of a,

v, and u, as well as w and Q when p 1s estimated, showed an
increase as the eccentricity of the orbit increased.

. AJ/{‘Q?W.W 74“/ S';f,a

1014-SSB-jan S. S, Bayliss
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APPENDIX A

Error Sources in the Measurement Functlon F

This appendix examines the principal sources of
error that make up the total error o (see Equation (17) in
the text) in the measurement function F and derives typical
one slgma values for their contribution to this total error.

1) Error in Tracking Station Location

Assume typical 1o station location errors to be *30m
(Reference 3a) in the local geographlic reference frame

X-axis North

I

y-axis BEast

]

z-aXxls down,
For the earth, we have

R

E 6378.16 km

® 7.292 (10_5) rad/sec .

ie
For a point on the earth's surface at latitude L, the velocity
due to the earth's rotation 1s

vV = REwie cos L
An error in location in the z-direction causes a velocity change
of

GVZ = W cos L 6z

ie
An error in the x-direction causes

V. = -w sin L 6x
X ie

An error in the y-direction causes no significant error in
velocity. Combining these contributions, we get

2 2

sV VeV “+8V
X Z

2 2
Wi e V6x“+682
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Since

§x 6z = 30 m ,
we get

Y

i}

.00308 m/sec (1o error)

2) Error in Speed of Light

Assume the lo error in the speed of light, ¢, to be
+100 m/sec (Reference 4a). Using a two-way Doppler measurement
system, the relative velocity is given by

v = ch
R 2F
o)
where
Fd = Doppler shift
FO = original frequency
Thus, Fd
8§V, = == 8¢
R Fo
For
VR = 10,000 m/sec
FO = 2200 MHz ,
we get
Fq = 14,700 Hz
Then
SVR = ,000334 m/sec

3) Frequency Measurement Errors

Reference 5 gives two-way Doppler tracking errors
as .001 m/sec.

Reference 3b gives Doppler measurement accuracies

- as being of the order of .01 Hz or lower. Thilis corresponds

to a velocity error of .00068 m/sec.
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4) Ephemeris Errors

Reference 6a gives the lo errors in the JPL fitted
planetary ephemerides for Mars and the earth-moon system
in an ecliptic reference frame as

Earth-Moon Mars
§x 35 km 18.2 km
8y 34.7 km 13.8 km
52 21.1 km 8.35 km

Errors in the tangential direction will have only
a negligible effect on the measurement function through changes
in the station-satellite direction. Errors in the radial
direction will have a significant effect on the planetary
velocity and will be examined further in the next section.
For estimation purposes, we assume the radial position error
to be 17 km for Mars and 35 km for earth. Note that this does
not include the error in the A.U. :

Reference 6b gives the plots of the velocity residuals
for the ephemeris calculations in the JPL Development Ephemeris.
From inspection, it would appear that a lo figure of .03 m/sec
for earth and .015 m/sec for Mars are representative values.

We assume this figure includes effects of radial position errors.

5) Error in the Astronomical Unit

Reference 3¢ gives two references for values of the
A.U. (References 7 and 8). The values given are

AU 149,598,000 +100 km (Reference 7)

AU

149,597,892 +100 km (Reference 8)

Since ephemeris position is given in terms of the A.U.,
an error in the A.U. leads to an .error in planetary position.
Assuming average radial distances for earth and Mars of

r 1.0 A.U.

E

]

r 1.52 A.U. ,

M

we get a radial error of 100 km in the position of earth and
152 km in the position of Mars. Using the energy equation
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we Ssee

The average values for R and V are given in Reference 4b as

Earth

Mars
R 1.496(10Y) m C2.28(10%) m
\' 29,770 m/sec 24,020 m/sec

o -3

he value for the gravitational parameter of the sun is given
S .

b= 1.327(10%9) m3/sec?

Uslng these values, we get

§V = t,0199 m/sec

for the earth and

sV = + 0162 m/sec
for Mars due to error in the A.U.

6) Summary of Errors

From Sections 1-5, we had the following errors:

Source: Value

.00308 m/sec
.000334 m/sec

Station Location

Speed of Light

Frequency Measurement .00068 m/sec
Ephemeris
~ Earth .03 m/sec
Mars . .015 m/sec
AU |
Earth ~.0199 m/sec
Mars

.0162 m/sec

i - o i i e

ada e
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Taking the square root of the sum of the squares of these
values, we get

sV = .0423 m/sec

.152 km/hr (1o error)

This roughly compares with the l¢ values of *.03 m/sec used in
the JPL report on Mariner IV tracking analysis (Reference 3).

The RMS error was computed assuming uncorrelated
error sources. Obviously some of the errors described are
correlated. Thus the value of .0423 m/sec should be an
upper bound on the actual error. This 1is true so long as
the heliocentric angle between Earth and Mars is less than
90°, since the A.U. errors in heliocentric velocity are
correlated and should be added vectorially. For example,
at 0° hellocentric angle the relative veloclty error should
be +.0037 m/sec, while at 180° it should be *.0361 m/sec.
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Partials of Measurement Function

From Equation (10), we had the measurement function as:

F(x,t) = p(x,t).0(x,t) (B1)
where
p = r(x,t) - D(t) - R(t) | (B2)
thus . ~
ap - ap
3F _ = =
3_5. = 8& & + Q 3_)_(_ (B3)
Since . o
& Tel
we get
i% = 1 i% - e £ (BY4)
°x — Tel 3x 2x Tel2
Also, we may show
alel ~ o 3p
ix. Bt ax
Thus
85 N ap P - ap
oF _ = — L = =
X Lte E ToT - T2 ‘2 - %) (B5)
From (B2), we see

5p  dr 3p  ar
ax  %x 3k 3x
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|

1

% Thus
| _

S F 3r . 6 3Ir . . ar
T LTl v [sx e e 5y
sr . ] ar A a;_i
== . p + (o . 720 - (¢ ) ( =)
°x & [o] 3X = ax’!
| - = - —J
|
? r 1
| v .y or L
| =5 . pt i(p - 52) = (p . 5)F]
90X !Q[ { X 0x i
Thus A
. . A~ ‘
s 90 - 9T o e
5x % &tax Tl T Tl T (B6)
| The quantities p, p, and |p| are evaluated using Equation (B2)
\ 3r T
with the nominal values of X . The values for 5% and z— can be

calculated in the following manner.

From Equations (5) and (6), it can be shown

cos @ cos(wt+f) sin 9 sin(w+f) cos i |

r = |r| sin @ cos(w+f) + cos @ sin(w+f) cos i

sin(w+f) sin i

B g
| -cos a(sin(w+f) + e sin w) - sin @ cos 1 (cos(w+f) + e cos w) !
r =N l—sin Q(sin(w+f) + e sin w) + cos Q cos i (cos(w+f) + e cos w) %
’ !
L.(cos(m+f) + e cos w) sin i _ j
l where _ 12
‘ ‘fl = a(l-—e2) . N =i—i———§
- l+e cos £ °? { >
| ca(l-e™) 1
I L J
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Using these equations, the partials may be shown to be

or
da
where
or
3f

o

3lr|

da

iz

da

3 r|

N

ax

2 af

+ |£| 3 Ja
oy

2 of
9z

2 of

-

[X2: Y29 22]

i —cos @ sin(w+f) - sin @ cos(w+f) cos i |
-sin @ sin(w+f) + cos @ cos(w+f) cos i E
L cos(w+f) sin i ‘J
el el p| esin £ af
da a =' 1l+e cos f da
3 |r| = |r| 2e ) Ir| cos f lr| & sin f
de -~ 1—e2 1+e cos —!' 1+e cos f
8|£I - ]P| e sin T ii
9T =! 14e cos f 9T
Elﬁi = |p| Ss8in f_ af
yu - l+e cos £ ayu

(o = a,e,t,u)

(B7)
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3

af . 3 N 2
58 - "5 3 (l+e cos ) (t-t)
%g = Elﬁ*g_ (2+e cos f)

(1-e%)

3

3f _ N2 2
= =0 (1+e cos f)
2 1N (g, £)° (t-1)
5 5 u2 os T

The remaining partials are

-sin @ cos(w+f) - cos 9 sin(w+f) cos i
or
75 = Izl cos @ cos(wtf) - sin @ sin(w+f) cos-i (B8)
0 a——t
-—cos @ sin(w+f) - sin 9 cos(w+f) cos i ]
ar
5= = |zl | -sin @ sin(w+f) + cos @ cos(w+f) cos 1 (B9)
cos(w+f) sin 1
L-‘ p—
B sin Q sin(w+f) sin i
or
57 = Izl -cos 2 sin(w+f) sin 1 (B10)
sin(w+f) cos i
-

For the partials of r with respect to X, we have

r N 3
%% " %a N T[T L e (oa=a,7,u) (B11)
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where
8N _ _ N
3a 2a
NN
Ju 21
aN _
3t - 0
dr . r
— . _¢€ _ = Naf
_e —
where
{'—cos  8in w - sin © cos 1 cos w }
‘
T = } -sin & sin w + cos © cos 1 cos w %
L cos w sin i g
-
. sin @ sin i(cos(w+f) + e cos w) §
or
3% = N i-cos 2 sin i(cos(w+f) + e cos w) (B13)
L_cos i(cos(w+f) + e cos w)
J
\ . -cos Q(cos(w+f) + e cos w) + sin @ cos i(sin(w+f) + e sin w)
oY
! 3% = N -sin Q(cos(w+f) + e cos w) - cos Q cos i(sin(w+f) + e sin w)

-(sin(w+f) + e sin w) sin i

..
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I
]!

@
2
2

sin @(sin(w+f) + e sin w) - cos @ cos 1(cos(w+f) + e cos w)

-cos 2(sin(w+f) + e sin w) - sin w cos i(cos(w+f) + e cos w)

0

axX

A (B15)
Equations (B6) to (B15) allow us to calculate the vector
F =
N (&st)'
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